

Circular Approach for Cities: Transforming solid waste into resources

Experts group meeting

**Center for Water and Sanitation (CWAS), CRDF
Faculty of Planning, CEPT University
Ahmedabad**

January 06, 2026

**CWAS
CRDF** CENTER
FOR WATER
AND SANITATION
CEPT
UNIVERSITY

**CEPT
UNIVERSITY**
FACULTY
OF PLANNING

viega foundation

Session 1: Welcome remarks

Circular Approach for Cities: Transforming solid waste into resources

Experts group meeting

For wifi connection

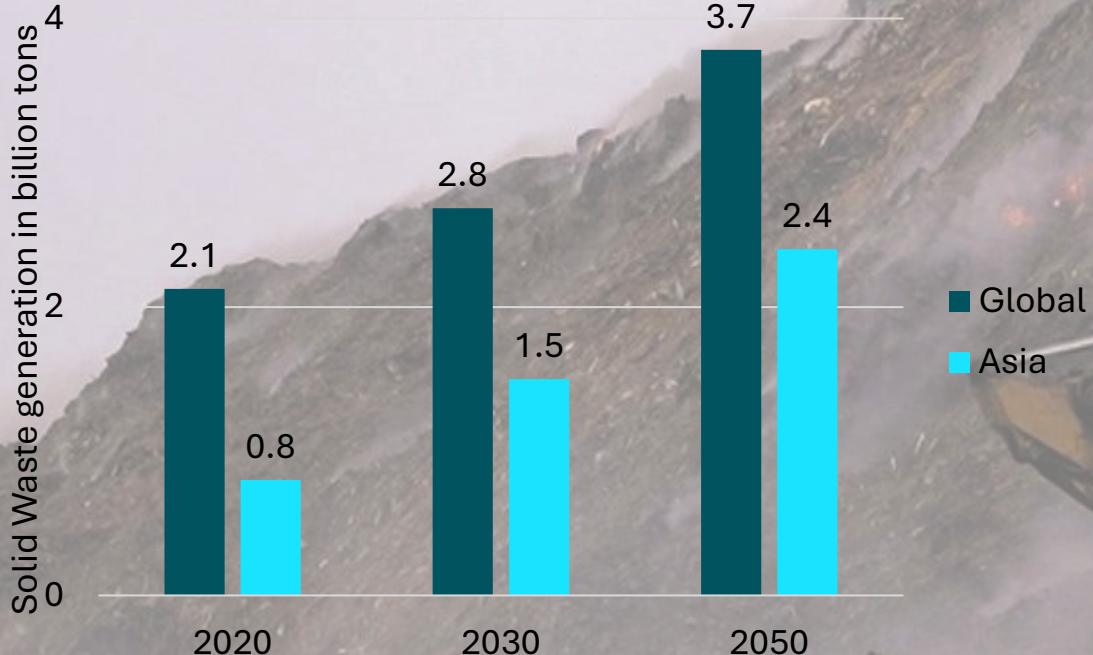
Connect cept faculty

Username - guest1

Password - WIFI@2024

Session 2: Enabling circular economy in urban Solid Waste Management: Opportunities and Challenges

**Circular Approach for Cities: Transforming
solid waste into resources**


Experts group meeting

CWAS
CRDF CENTER
FOR WATER
AND SANITATION
CEPT
UNIVERSITY

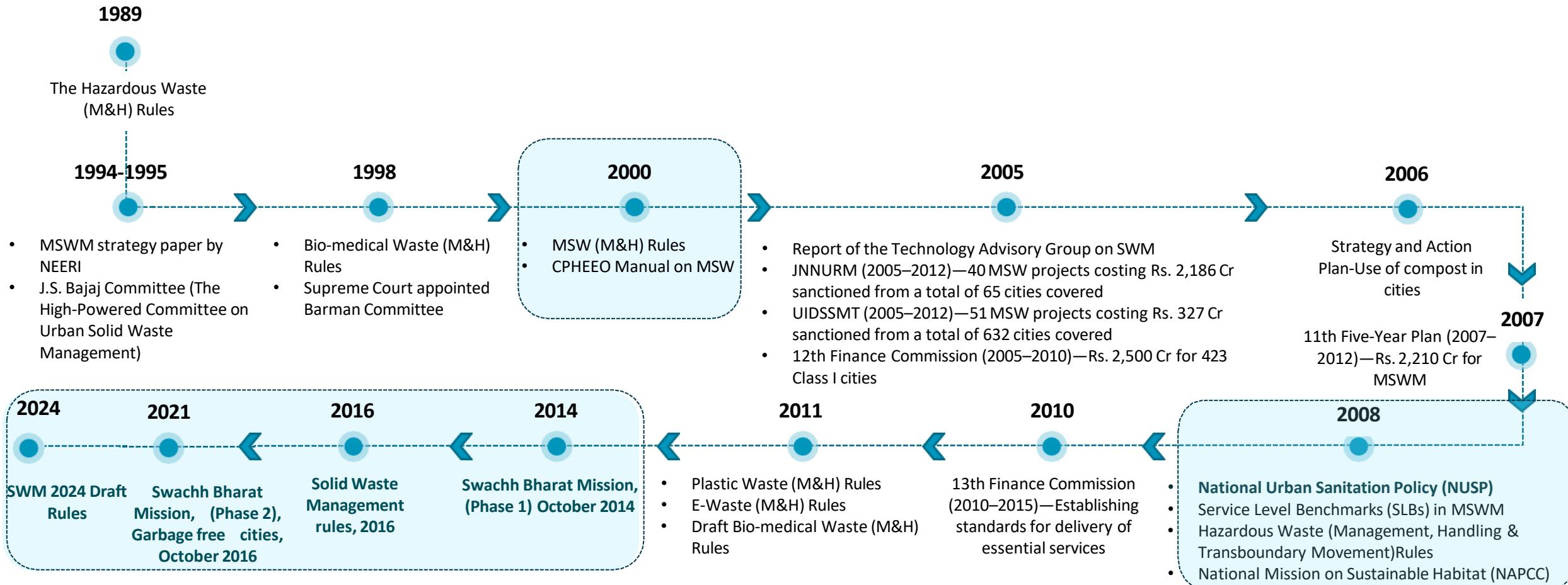
CEPT
UNIVERSITY
FACULTY
OF PLANNING

Alarming need to address this.....

Solid Waste Generation across globe and Asia
(2020 – 2050)

Per capita waste generation is very low in Asian countries as well as varying waste characterization

The global waste crisis and its **environmental impacts** have prompted the need for innovative solutions to address the challenges of waste management.


Uncontrolled waste dumping

Plastic waste

Organic waste

UNEP report predicts city waste will rise two-thirds by 2050, raising servicing cost to \$600 bn

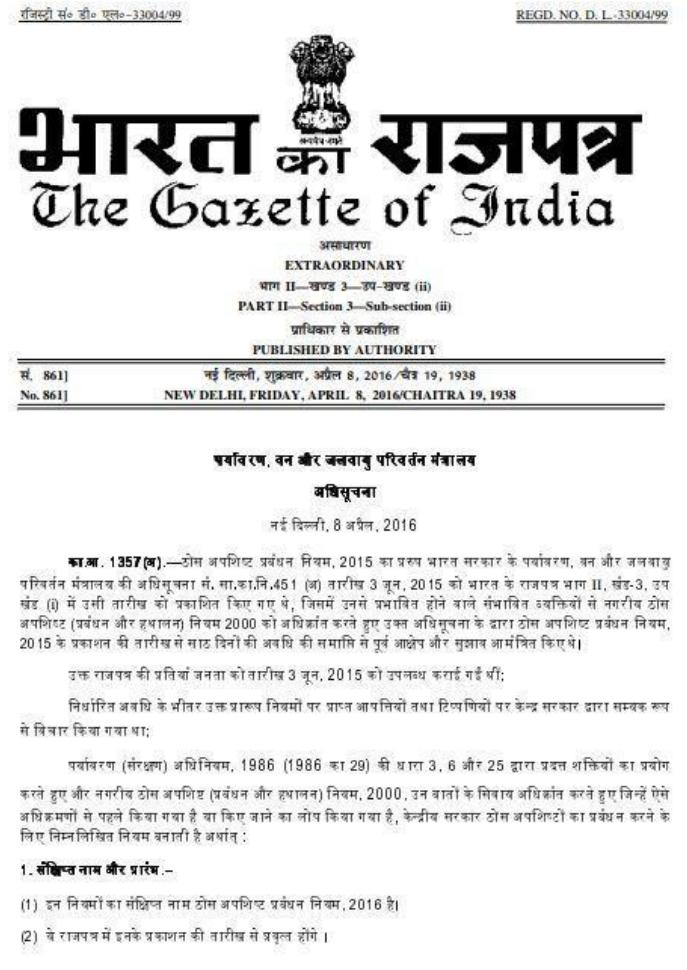
Important National level policy landmarks and initiatives by Government of India for Solid Waste Management

MSW Rules, NUSP and Swachh Bharat Mission key milestones for SWM ...

Current trend of Municipal Solid Waste Management in India

To incentivize cities for performing well, star rating protocol came into action under the aegis of Swachh Bharat Mission

Shift from waste management to resource management


Focus is on segregation, decentralization, circular economy

India's SWM Rules (2016) provided a focus on recycle and reuse...

Focus of Solid Waste Management Rules (2016) on the following aspects -

- Segregation at source level with an intend of focusing on circular economy
- 5% of the total plot area or minimum 5 plots/sheds are required to be dedicated for recovery and recycling facility.
- Manufacturer of disposable products (such as tin, glass, plastic packaging etc) are required to provide financial assistance to the ULBs for establishing proper waste management facility.
- SWM rule promotes construction of compost plants which will provide high nutrients fertilizers to the farmers.
- Industrial units who are depended on fuel and located within 100 km from any solid waste-based RDF plant, shall replace 5% of their fuel requirement by the RDF produced fuel.
- SWM 2024 (draft rules) also focus on bulk waste generators and their links for circular economy

Moving from linear to circular economy

Cities concentrate waste generation, infrastructure, markets, and labour—making them ideal laboratories for circular solutions.

The circular economy has emerged as a promising approach to transform the linear "take-make-dispose" model into a more sustainable and efficient system.

Dimension	Key Benefits
Environment	Reduced waste, pollution, and land degradation
Climate	Lower GHG emissions, methane avoidance
Economy	Value creation, resource efficiency
Urban Finance	Lower SWM costs, new revenue streams
Jobs & Livelihoods	More jobs, informal sector inclusion
Public Health	Cleaner cities, safer workers
Resilience	Reduced material dependence, local supply chains

SBM focused on concept of 3R (Reduce, Reuse, Recycle), now evolving to 5R

- » To ensure maximum resource recovery by converting waste to wealth
- » The theme of **Swachh Survekshan**, for 2024 is Reduce-Reuse-Recycle
- » Under the campaign “**Meri LiFE, Mera Swachh Seher**” thousands of **RRR** (Reduce-Reuse-Recycle) centres have been set up in India
- » Encouraging community participation as citizens contribute towards reuse or recycling
- » There are **other unique RRR initiatives** such as making murals, artefacts and reusable products, generating energy etc **engaging local governments, Self help group, private organizations etc.**

SBM 2.0 already supports several **5R principles**

Aspiring to move towards **7R: Systemic Circularity**

Rethink – Refuse – Reduce – Reuse – Repair – Repurpose – Recycle

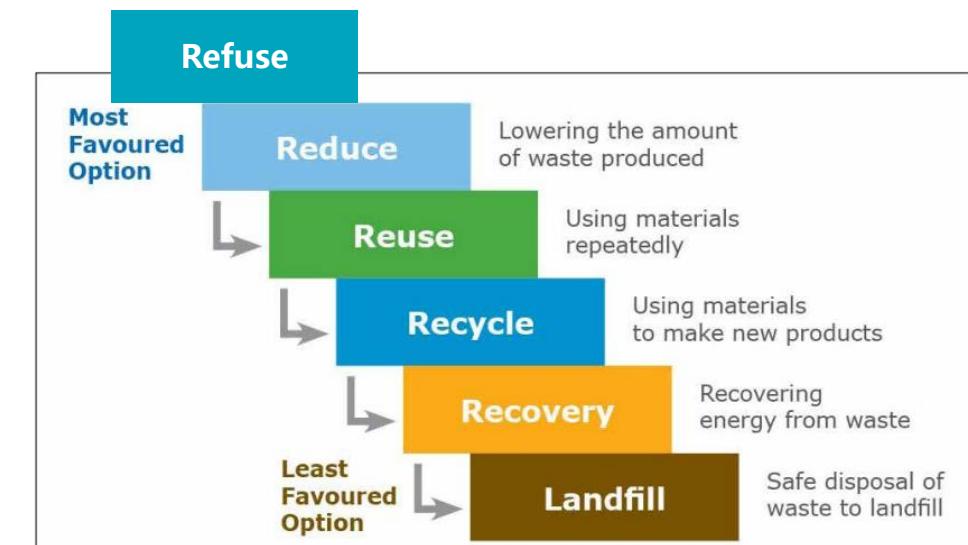
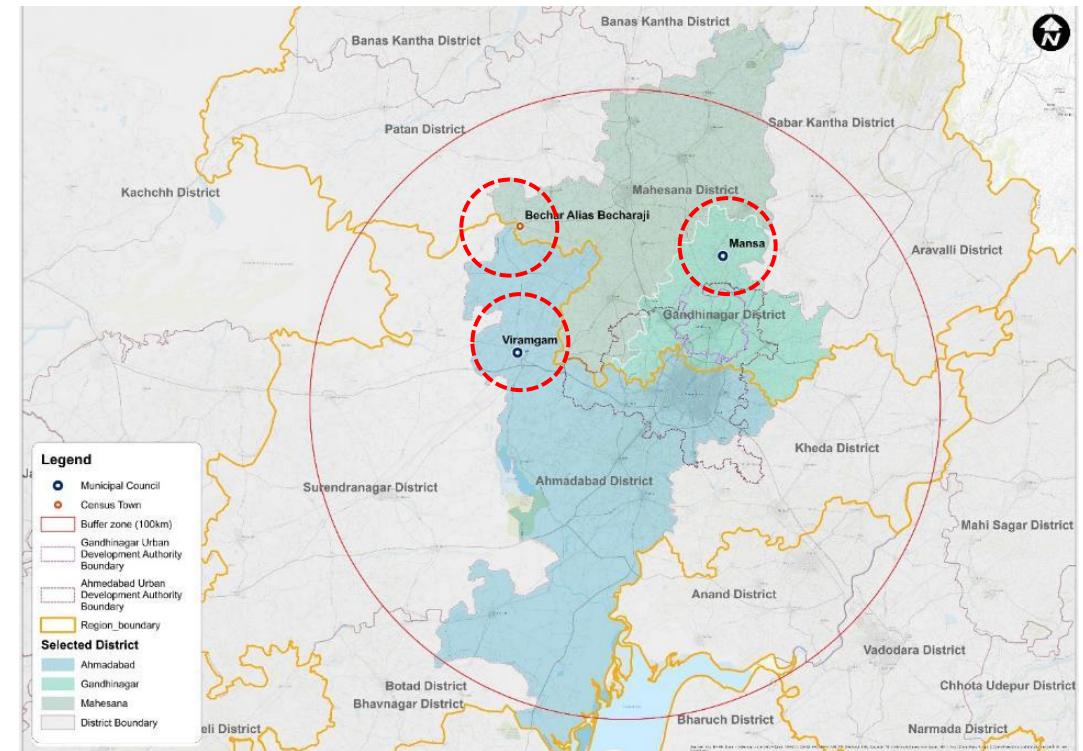


Figure: Management of Plastic Waste

CWAS is supporting as a Swachhta Knowledge Partner (SKP), GoG and also three cities of Gujarat to move towards climate resilient waste management services with focus on circularity

Support as SKP


59
Total
Trainings

07
Municipal
corporations
157 Municipal
Councils

38
Districts and
RCM level
trainings

3800+
ULB officials
trained

Support to three cities

- A platform to share challenges and feedback of ULB officials to state level officials
- Strengthened capacity of urban and rural officials for implementing SBM 2.0

**Waste (wastewater and SWM) Management
Action Plans**

Solid waste management poses distinct challenges in small and medium towns compared to larger municipal corporations

Challenges of solid waste management in small and medium towns of India

Source

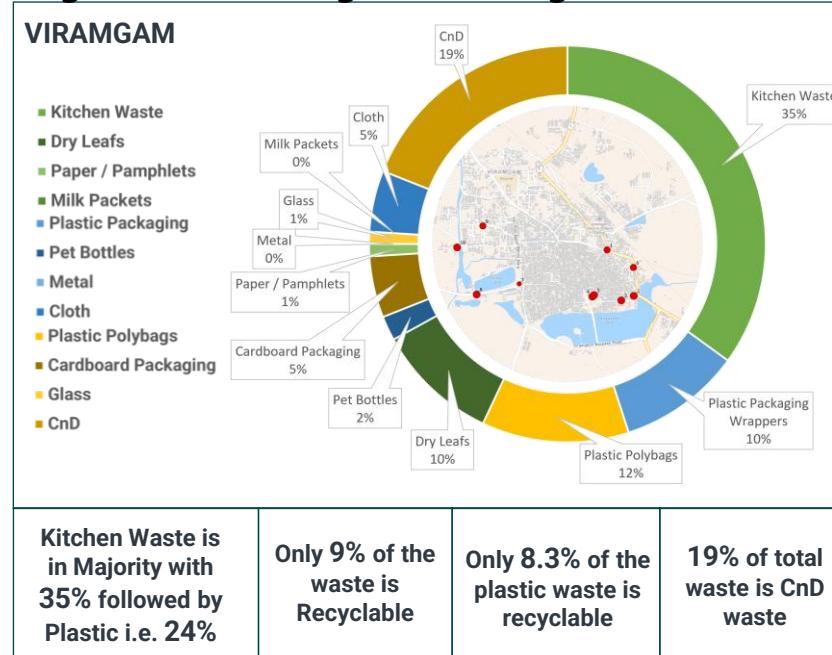
Collection

Waste Processing and Treatment

Recycle/ Reuse

- **Lack of segregation at source**, manually segregation by ragpickers at dumpsite.
- **Limited Infrastructure** for segregation at city level.

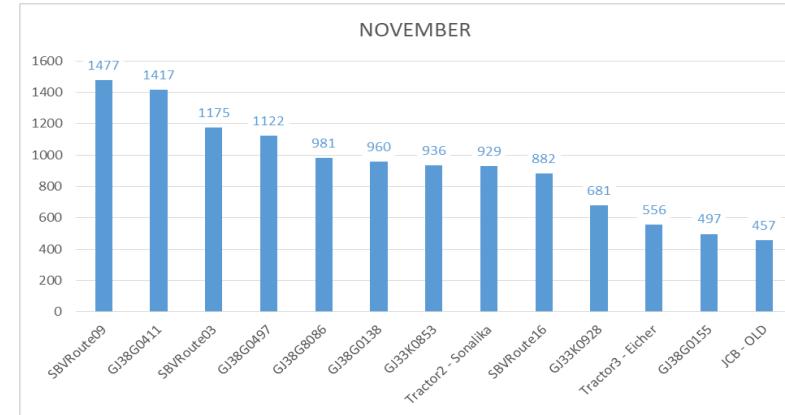
- **Cities have sufficient infrastructure** for D2D collection.
- **Operational challenges** in management of D2D even faced by private operator.
- **Lack of accountability and monitoring** in D2D contracts


- Lack of processing infrastructure
- Few cities have MRF Centres and equipment for waste processing but **face operational challenges**.
- **Lack of capacity** of private operator.

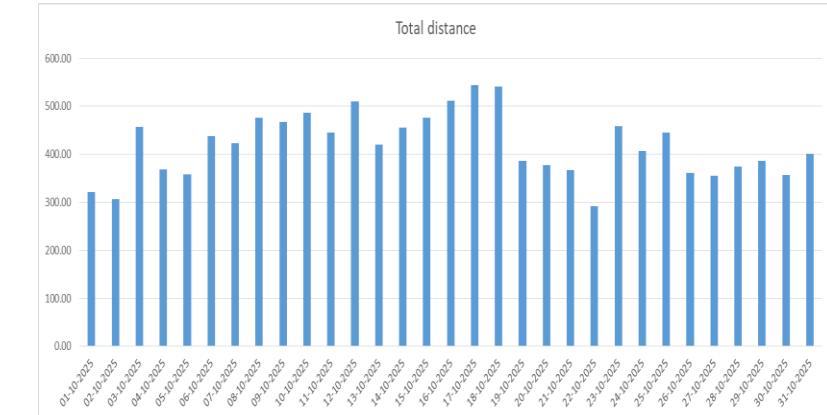
- **Presence of informal market** for selling waste to recyclers.
- Missing market for forward linkages
- **Plastic waste and C&D waste management** are main problem due to lack of quantification.
- Very few cities have functional C&D waste management sites and lack of demand of reusing the waste.

Need for waste characterization at GVP and dumpsite is crucial

Using the Quartering and coning method at SWM processing site, waste composition was derived for the city

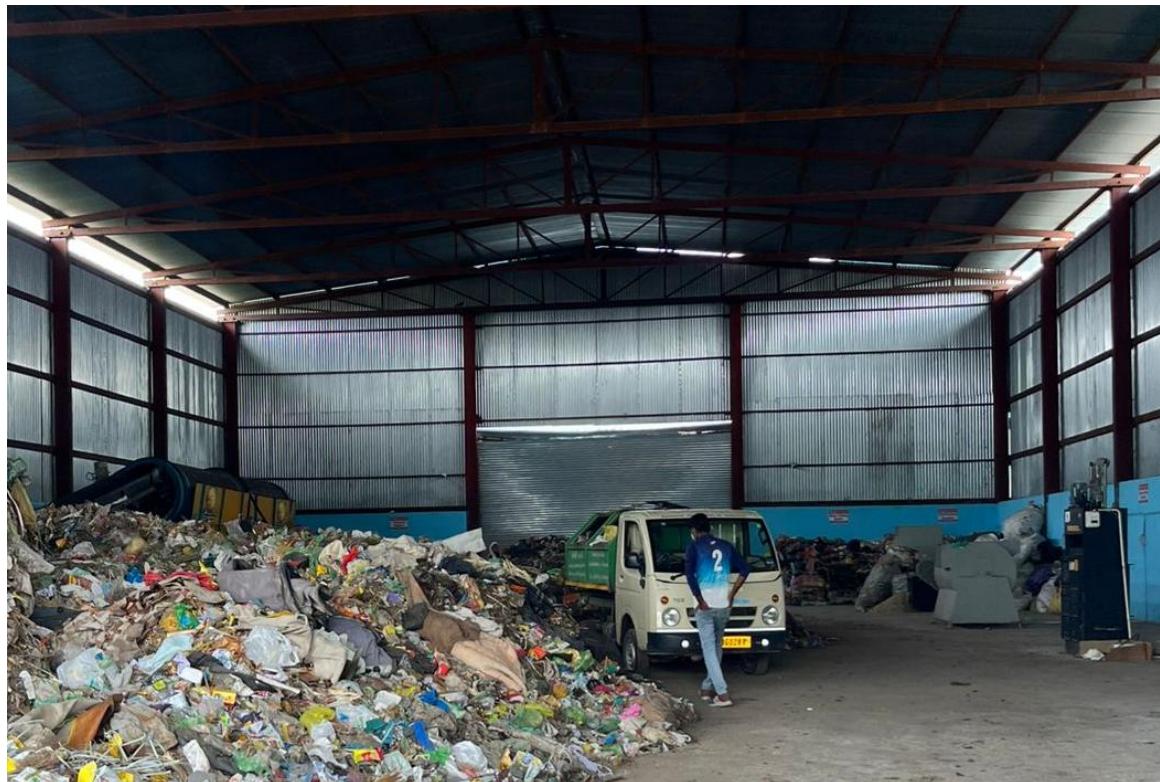


	Type of waste	Weight (kgs)	Percentage (%)
1	Organic (kitchen & garden waste)	1.6	26.7
2	Textile	1.28	21.3
3	Inert	1.2	20.0
4	Low density plastic	1.17	19.5
5	Glass	0.4	6.7
6	High density plastic	0.18	3.0
7	Paper	0.17	2.8
	Total Waste	6.0	100.0


Waste characterization at GVP

Waste characterization at dumpsite

Door to door services present, however irregular collection as well as uneven distribution of collection services across fleet


Total distance covered by all vehicles in a month

Total distance covered by one vehicle in a month

- Door to door services cover 90-90% of urban wards, however their efficiency in collection is lacking
- Irregular timings of collection leads to GVP formation
- No consistent allocation of vehicle with route
- Small lanes mostly lack collection services
- Lack of monitoring system at local level..

Small and medium cities face operational challenges with lacking financial, technical and human resources capacity

Infrastructure available though operational challenges

Lack of technical and human resource capacity

Post contract management challenges, poorly designed contracts; Delayed payment issues

Recovered material at MRF but no forward linkages established

Continuing the tradition practices and absence of innovation in the sector faces significant occupational hazards to sanitation workforces

National Action for
Mechanised Sanitation
Ecosystem (NAMASTE)

National Safai Karamcharis Finance
& Development Corporation
नेशनल सफाई कर्मचारी फाइनेंस एंड डेवलपमेंट कॉर्पोरेशन

(A Government of India undertaking under the Ministry of Social Justice & Empowerment)

Occupational Hazards for all the workers

Informal workers face more health impacts due to working in deteriorating conditions

Improvement in services and integration informal workers will support in improving the health of the workers

Existing schemes and policies in place but capacity building is required to implement on ground.

The challenge for moving towards circular economy is not policy absence, but execution and incentive alignment

01

Lack of **quantification** and **characterization** of waste to identify and setup processing and treatment infrastructure

02

Insufficient Infrastructure

The lack of adequate waste collection, sorting, and processing facilities, particularly in smaller towns

03

Lack of Awareness

Limited public awareness and other stakeholder awareness of understanding aspects of circular economy

04

Limited inter-departmental and regulatory coordination

05

Financial Constraints

Limited financial resources for capital and particularly for operations cost hinder the sustainability of the services

06

Lack of **adequate staff** for monitoring compliance

Initiatives have been taken by cities to improve the services across the service chain

Incentivized segregation through property tax rebates and community recognition: **General Tax Rebates**

Collecting and Processing wet waste and utilizing as a compost generating monthly revenue in lakhs

Real time monitoring of door to door collection: Along with GPS tracking, added a feature of alert on detour of vehicle to the monitoring authority

Zero Waste Management (ZWM) units were introduced in the town
Small biogas units & shredders installed at ZWM units

Decentralised waste collection-
Involvement of SHGs and informal workers to collect segregated waste and sell dry waste to industries

Converting plastic waste into usable items such as benches, chairs, and paver blocks. These recycled plastic items are installed in public spaces like parks and temples

Series of awareness campaigns conducted on various themes of promoting segregation, ban of single use plastic, sanitation workers safety conducted by various stakeholders

These are these leading initiatives, need to identify approaches to scale them up across various small and medium towns of India

- What does a realistic and scalable circular economy model for solid waste look like for small and medium cities in India?
- What can be done immediately versus what requires systemic reforms for local governments?
- How should success be institutionalised beyond individual projects or leadership tenures?

Partnership and collaboration to attain scale

Urban Development
&
Urban Housing Department
Government of Gujarat

सत्यमेव जयते
DISTRICT ADMINISTRATION MEHSANA
GOVT. OF GUJARAT

क्रमयोग * संगठन * समृद्धि

Viramgam
Nagarpalika

viega foundation

CWAS

CENTER
FOR WATER
AND SANITATION

CRDF CEPT RESEARCH
AND DEVELOPMENT
FOUNDATION

CEPT
UNIVERSITY

CEPT
UNIVERSITY
FACULTY
OF PLANNING

THANK YOU

CWAS
CENTER
FOR WATER
AND SANITATION

CRDF CEPT RESEARCH
AND DEVELOPMENT
FOUNDATION

CEPT
UNIVERSITY

About us

The Center for Water and Sanitation (CWAS) is a part of CEPT Research and Development Foundation (CRDF) at CEPT University. CWAS undertakes action-research, implementation support, capacity building and advocacy in the field of urban water and sanitation. Acting as a thought catalyst and facilitator, CWAS works closely with all levels of governments - national, state and local to support them in delivering water and sanitation services in an efficient, effective and equitable manner.

cwas.org.in
pas.org.in

cwas@cept.ac.in
tiny.cc/pasenews

CEPT CWAS

cwas.cept

cwas.cept

cwas.cept

CWAS

CENTER
FOR WATER
AND SANITATION

CRDF

CEPT RESEARCH
AND DEVELOPMENT
FOUNDATION

CEPT
UNIVERSITY

Session 3: Discussion on opportunities and challenges to promote circular economy in solid waste management

Circular Approach for Cities: Transforming solid waste into resources

Experts group meeting

CWAS
CRDF CENTER
FOR WATER
AND SANITATION
CEPT
UNIVERSITY

CEPT
UNIVERSITY
FACULTY
OF PLANNING

Acknowledging the significance of segregation is essential to improving recycling operations

K
E
Y
C
H
A
L
E
N
G
E
S

Institutional & Governance

- Weak enforcement of segregation by-laws
- Limited ULB capacity for monitoring and compliance

Infrastructure & Service Gaps

- Insufficient decentralized wet-waste processing
- Limited MRF capacity for segregated dry waste

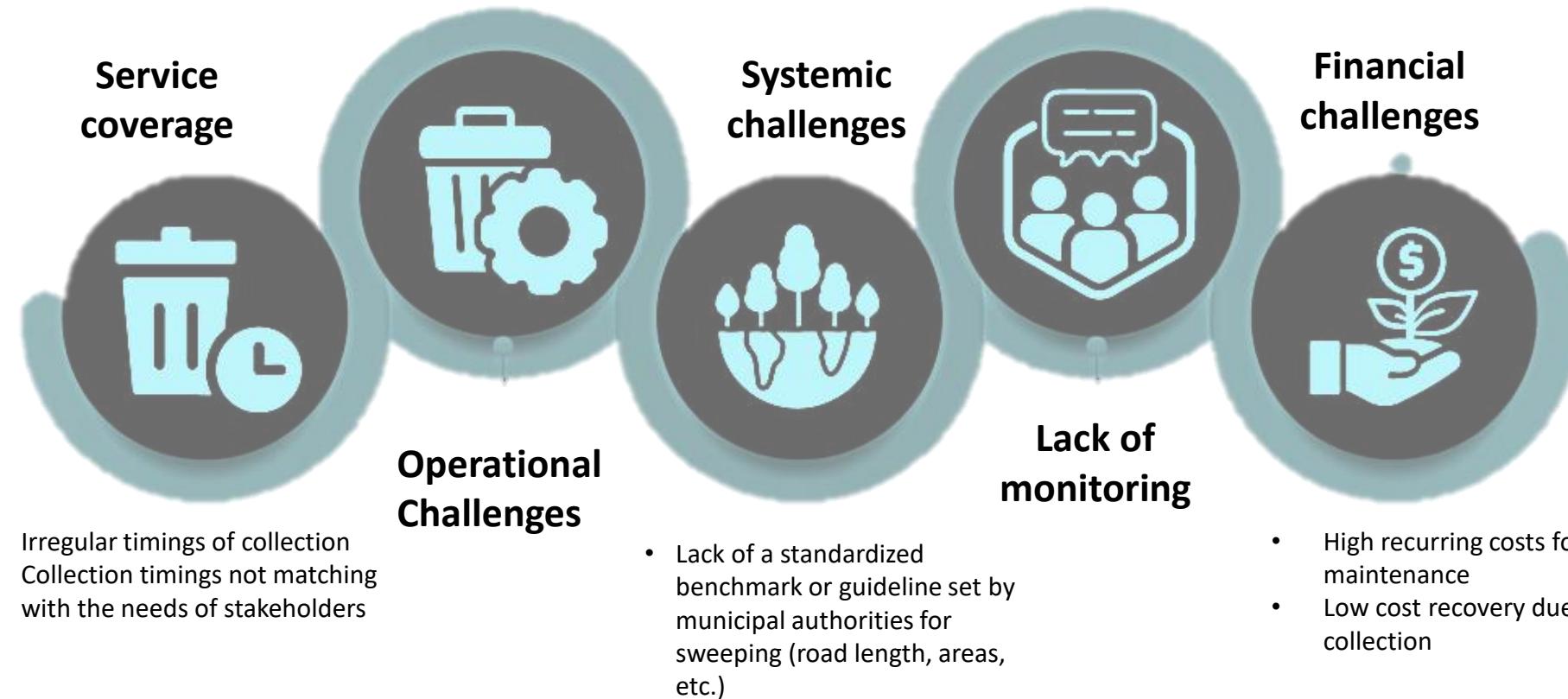
Systemic Challenges

- Lack of incentives and penalties at source
- Inadequate data on waste quantity and composition

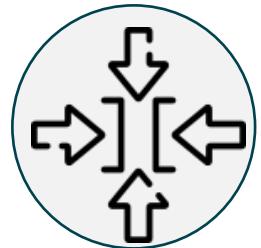
Occupational & Operational

- Health risks to sanitation workers from mixed waste
- Limited training of frontline staff

Awareness & Behavior Change


- Low public awareness and weak segregation habits
- Informal recycling driven by mixed waste

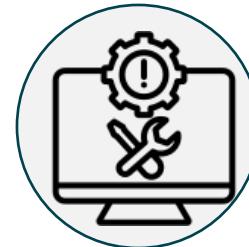
What incentives can encourage residents and other stakeholders to practice waste segregation?


Ensuring regular and timely door to door collection and sweeping

- Incomplete coverage, especially in slums, peri-urban areas, and informal settlements
- Narrow lanes and unplanned layouts restricting vehicle access
- GPS systems installed in vehicles but not monitored
- Limited capacity of ULBs to monitor and ensure compliance

How to ensure regular, timed, monitored door to door collection???

Processing and treatment at small scale is daunting


Scale & Feedstock Constraints

- Insufficient quantity and inconsistent supply of segregated waste
- High seasonal variation in waste composition

Operational & Financial Challenges

- High O&M costs relative to waste quantity
- Limited skilled human resources to operate and maintain facilities
- Delays in payments affecting plant performance

Planning & Technical Gaps

- Limited understanding of appropriate, low-cost technologies for small towns
- Technology selection driven by vendors, not waste characteristics

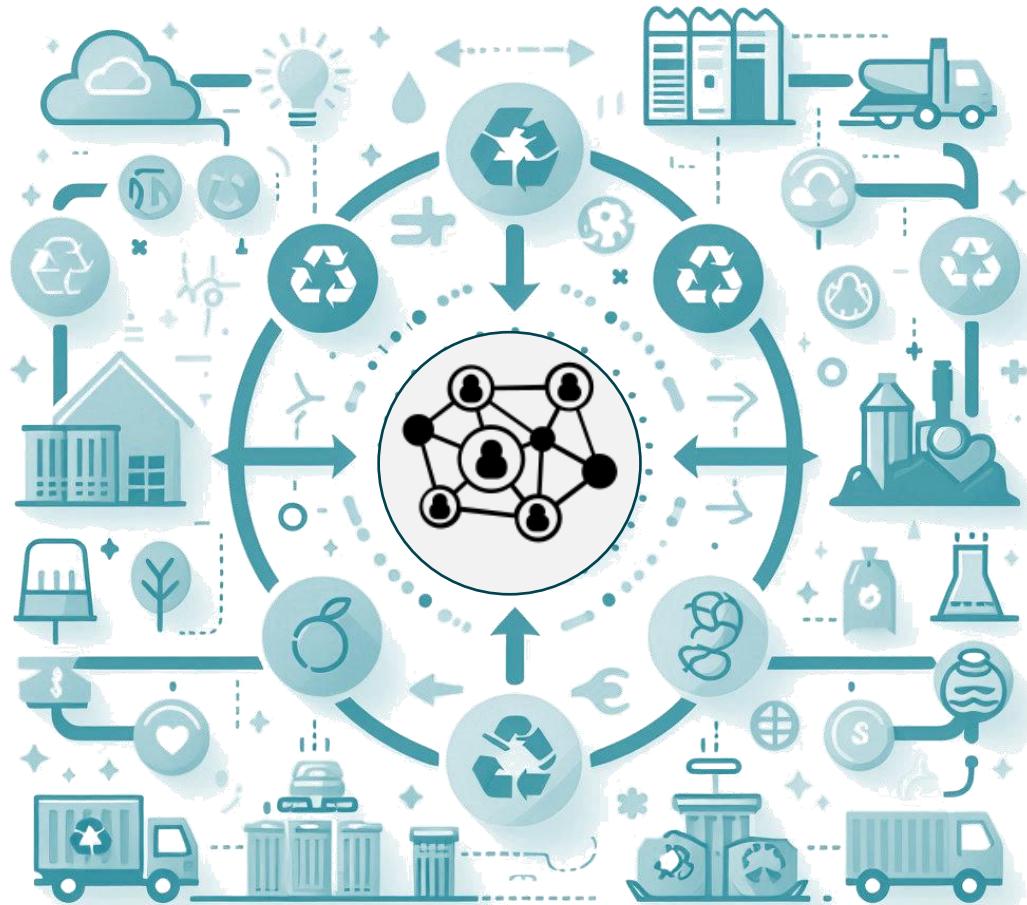
Contracting & Governance

- Contracts often focus on tonne of waste treated rather than quality of processing and recovery
- Short contract tenures discouraging long-term efficiency

Land & Infrastructure

- Limited land availability for decentralized facilities
- poor access sites roads and utilities (power, water) at processing

Regulatory & Compliance


- Inadequate monitoring of environmental standards
- Poor documentation and reporting from facilities

Should cluster based approach be explored for processing?

Do integrated contracts help in improving the processing of waste?

Missing forward linkages for promoting circular economy

What kind of pre-processing will be required to attract private markets for small scale?

Is Waste to Energy an option for small and medium towns??

Can regional or cluster-based approaches reduce costs and improve efficiency? What role should state governments play in aggregation and capacity support?

Plastic Waste Consumption Vs. Recycling

???

K
E
Y
C
H
A
L
L
E
N
G
E
S

Only **60%** plastic waste is recycled, most of it is done by informal sector.

Generation & Consumption

- Rapid growth of single-use plastics
- High use of low-value, multilayered plastics

Institutional & Systemic

- Poor data on plastic waste generation and flows
- Limited coordination among ULBs, producers, and recyclers

Recycling & Processing

- Limited capacity for low-grade and MLP recycling
- Informal sector dominates, with unsafe practices
- Downcycling instead of true recycling

Policy & Enforcement

- Weak enforcement of Plastic Waste Management Rules
- Inconsistent implementation of EPR across states

Market & Economics

- Low and volatile market value of recyclables
- Virgin plastic often cheaper than recycled plastic

How to formalize the informal workers in plastic waste management?

What measures can strengthen the enforcement of existing rules?

Discussion on opportunities and challenges to promote circular economy in solid waste management

Source

Is segregation necessary or identifying ways to process mixed waste a way forward???

What incentives can be offered to residents and other stakeholders to follow segregation practice???

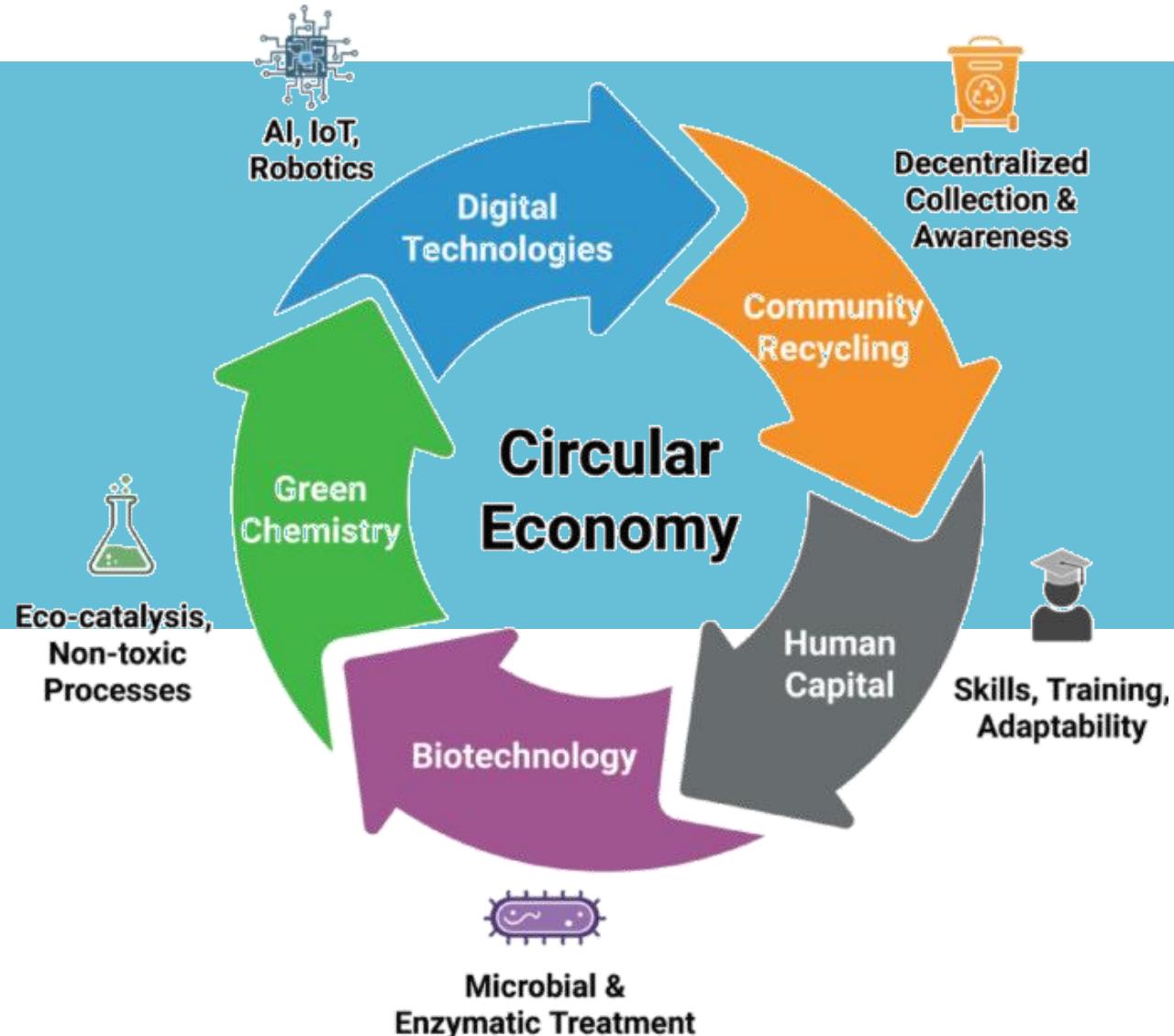
Collection

How to ensure regular, timed, monitored door to door collection???

Waste Processing and Treatment

Should cluster based approach be explored for processing?

Do integrated contracts help in improving the processing of waste??

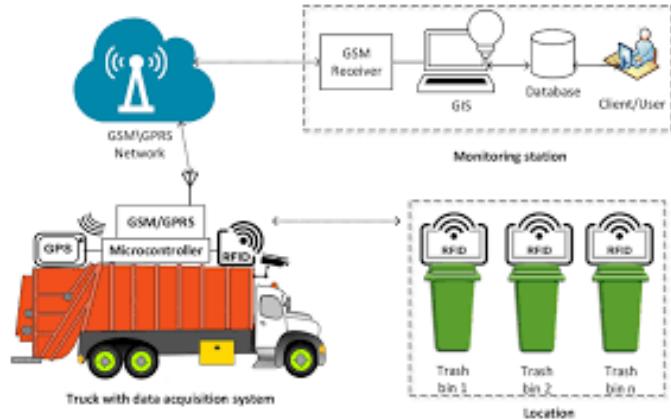

Recycle/ Reuse

What kind of pre-processing will be required to attract private markets for small scale?

Is Waste to Energy an option for small and medium towns??

What institutional and governance efforts can be enhanced to improve SWM???

How to formalize the informal workers in plastic waste management?


Session 4: Discussion on innovations and technology for promoting circular economy

Circular Approach for Cities:
Transforming solid waste into resources

Experts group meeting

Technologies for supporting segregation of waste and waste collection

IoT and RFID enabled smart bins

Segregation using size and density detection sensors

E-waste Kiosks

Segregation using thermal sensors

Source: Trashcon.in

Technologies for Processing Reuse/Recycle of Solid Waste

Bio methanation and Biogas Plant

Fully automated MRFs

Camera and AI vision-based sorting

Geofencing and alerts: Virtual boundaries around routes and dumping sites to flag route deviations, unauthorized dumping, or skipped areas

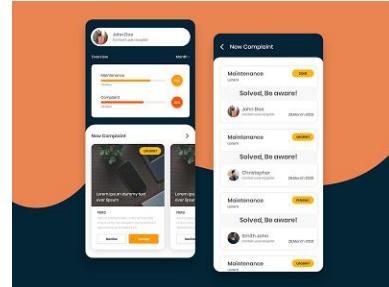
Plastic recycling innovations

Chemical recycling to convert low-value plastics and multilayered packets into oil or feedstock, Plastic roads (bitumen modified with waste plastic), Textile recycling into insulation, mats, and yarn

RDF use in cement kilns

EPR-linked systems

Tech platforms that connect ULB-collected plastics, e-waste, etc., with Producer Responsibility Organizations

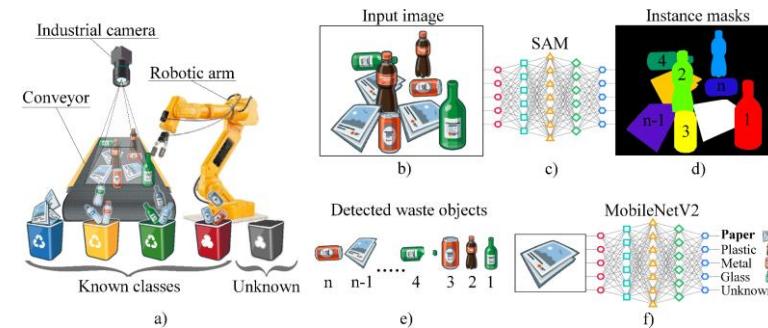

Technologies for monitoring of Solid Waste Management services

GPS tracking on vehicles

Why Waste Management Fleets in India Are Adopting GPS Tracking

Citizen complaint and feedback apps

POI Route based route monitoring system


Geofencing and alerts: Virtual boundaries around routes and dumping sites to flag route deviations, unauthorized dumping, or skipped areas

Central databases and dashboards

Central databases and dashboards (often cloud-based) that integrate GPS, RFID/QR, weighbridge, and complaint data

AI/vision-based classification

Camera and AI models at MRFs or transfer stations for automated waste-type recognition, composition estimation, and quality checks on segregated streams

Discussion on innovations and technology for promoting circular economy

Source Segregation

Are innovative technologies for segregation viable for small and medium sized cities??

Processing and Recycle/Reuse

Do advanced waste processing technologies work well in small and medium towns?

How can small and medium towns create steady demand for compost and recyclables?

Monitoring

How to strengthen monitoring of SWM services?

Are there new innovations or technologies available which small and medium scale cities can adopt?

What low-effort, non-tech or light-tech monitoring approaches can ULBs adopt for daily solid waste management oversight?

What policy and governance efforts are required for promoting innovations and technologies in circular economy???

THANK YOU

CWAS
CENTER
FOR WATER
AND SANITATION

CRDF CEPT RESEARCH
AND DEVELOPMENT
FOUNDATION

CEPT
UNIVERSITY

About us

The Center for Water and Sanitation (CWAS) is a part of CEPT Research and Development Foundation (CRDF) at CEPT University. CWAS undertakes action-research, implementation support, capacity building and advocacy in the field of urban water and sanitation. Acting as a thought catalyst and facilitator, CWAS works closely with all levels of governments - national, state and local to support them in delivering water and sanitation services in an efficient, effective and equitable manner.

cwas.org.in
pas.org.in

cwas@cept.ac.in
tiny.cc/pasenews

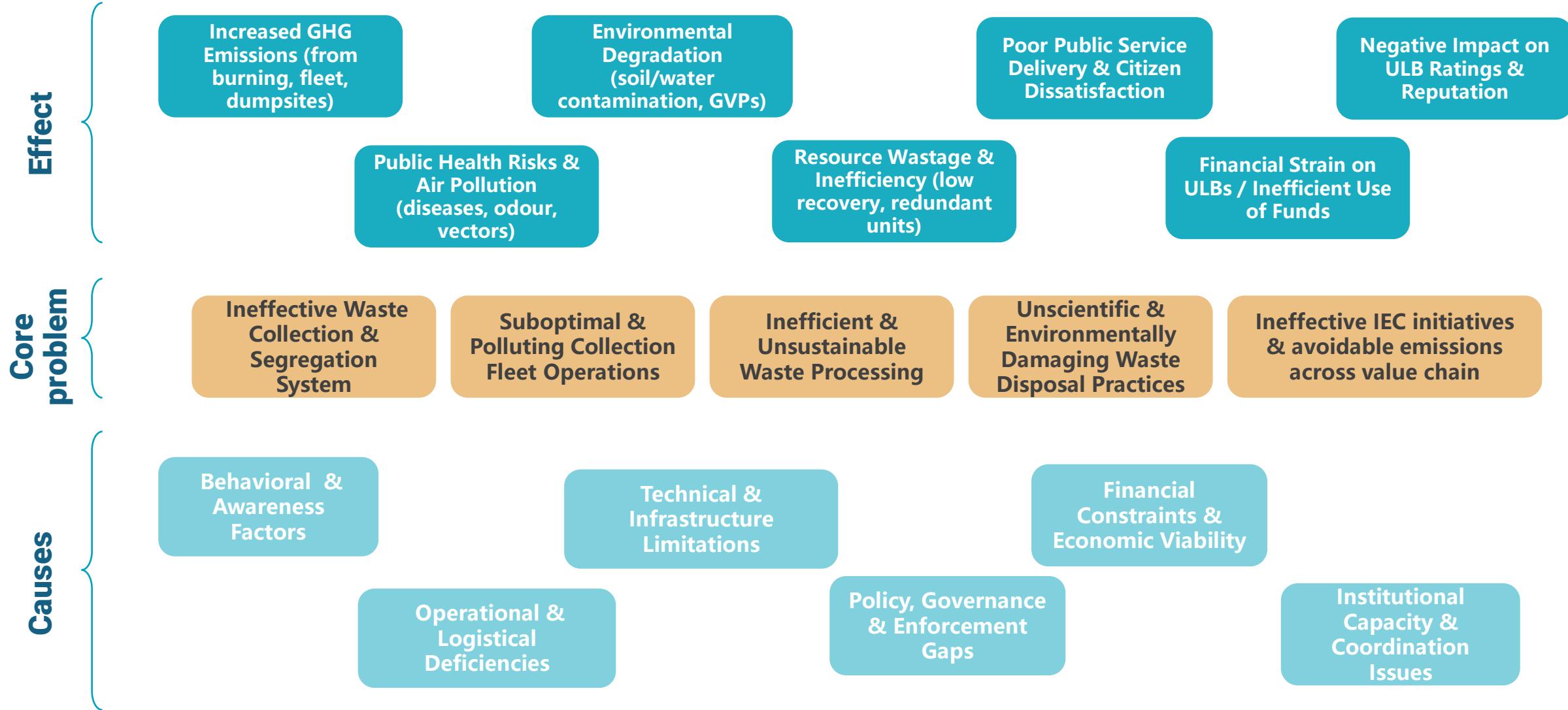
CEPT CWAS

cwas.cept

cwas.cept

cwas.cept

CWAS


CENTER
FOR WATER
AND SANITATION

CRDF

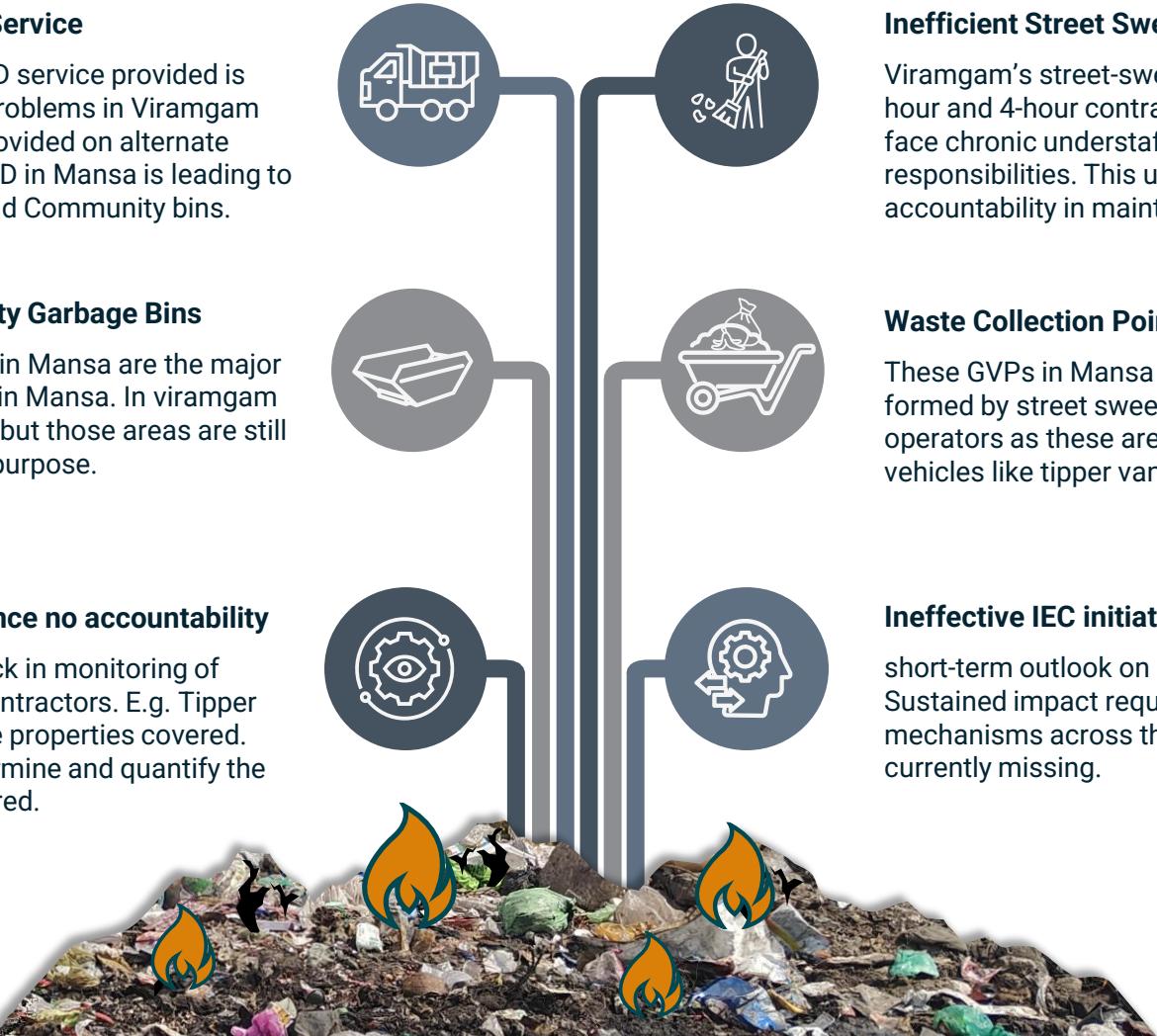

CEPT RESEARCH
AND DEVELOPMENT
FOUNDATION

CEPT
UNIVERSITY

Solid waste management

Issues Identified

Inefficient Collection Service


The inefficiencies in D2D service provided is causing massive GVP problems in Viramgam where D2D service is provided on alternate days. Odd timings of D2D in Mansa is leading to the issue of GVPs around Community bins.

Presence of Community Garbage Bins

Use of Community bins in Mansa are the major cause of GVPs forming in Mansa. In viramgam these bins are removed but those areas are still working with the same purpose.

Lack of monitoring hence no accountability

There is a significant lack in monitoring of people as well as the contractors. E.g. Tipper vans are paid just by the properties covered. There is no way to determine and quantify the quality of service delivered.

Inefficient Street Sweeping Service

Viramgam's street-sweeping system employs both 8-hour and 4-hour contract shifts, but the shorter shifts face chronic understaffing and poorly defined responsibilities. This undermines efficiency and accountability in maintaining cleanliness.

Waste Collection Point

These GVPs in Mansa and Viramgam are generally formed by street sweepers and Wheelbarrow operators as these are collection points for bigger vehicles like tipper vans to further take it forward.

Ineffective IEC initiatives

short-term outlook on IEC limits their effectiveness. Sustained impact requires follow-up and monitoring mechanisms across the waste value chain, which is currently missing.

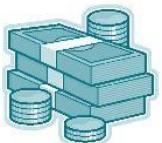
the open burning of waste, a common practice in areas lacking efficient formal waste management systems, contributes to air pollution. The emitted pollutants, including fine particulate matter and toxic compounds, are associated with respiratory and cardiovascular diseases.

A photograph showing two women in a vast, sprawling trash dump. One woman, wearing a yellow headscarf and a grey dress, stands on the left, looking out over the waste. Another woman, wearing an orange headscarf and an orange dress, stands on the right, near a small fire. The ground is covered in trash, and the background is filled with piles of waste stretching into the distance. A large white box is overlaid on the center of the image, containing text.

2,70,000

premature deaths each year worldwide

Recommendations from India for preparing policy guiding document



Community participation in garbage classification will help in attaining Circular economy has a positive impact on the SWM value

Awareness among citizens through behavior change activities in their local language.

Promoting WASTE as WEALTH . IEC cell which is constantly thriving to achieve a positive behavior shift among the citizens.

Financial incentive to promote recycle and reuse at property level, helps in reducing waste that needs to be treated at centralized level

Engagement of women led self-help group, evoking an inclusive environment in the paradigm of the SWM value chain

Empathy towards health and safety of sanitation workers by enrolling them under various national level health insurance schemes.

To incentivize cities for performing well, star rating protocol came into action under the aegis of Swachh Bharat Mission

How Garbage Free cities are assessed?

ODF certification require	ODF + certification require	ODF++ certification require	Water+ certification require
1 star	3 star	5 star	7 star
16 important components	16 important components	24 components – 16 important and 8 aspirational	24 components – 16 important and 8 aspirational
2400 marks required out of 5200	3600 marks required out of 5200	6300 marks required out of 7,500	7,500 marks required out of 7,500
Parameters consider for calculating the city's score	Door to Door Collection of waste Source Segregation of Waste	Sweeping of public, commercial and residential areas, waste storage bins and litter bins Scientific Waste processing, Scientific landfilling and C&D waste management	Dumpsite remediation Bulk waste generators compliance City Beautification, IEC and capacity building Waste reduction through on-site processing of the wet waste
		Citizen Grievance redressal Geo – spatial mapping and digital monitoring of SWM operations	User fees, Plastic ban, sale of waste by-products Cleaning of storm water drains and water bodies and screening of Nallahs

Out of 12 parameters, 7 parameters of GFC protocol are linking along with the concept of closing the loop, 3R and improving the resource management

Swachh Survekshan as a measuring and monitoring tool for assessing status of the cities towards garbage free goal

- World's largest annual urban cleanliness survey
- A score-based framework

Three step process

- Self-Declaration
- Star rating
- Third Party Verification

Solid waste management poses distinct challenges in small and medium towns compared to larger municipal corporations

Scale and Complexity of Waste Generation

Segregation

Infrastructure: Collection, Processing and Treatment

Financial Sustainability

Capacity Building

Private Sector Engagement

Environmental Risk

Larger cities

Very high volumes, diverse waste streams

Inconsistent due to density & floating population

Centralised processing facilities:
Composting plants, biomethanation units, and waste-to-energy plants.

High O&M costs, partial cost recovery

Dedicated staff, coordination challenges

High interest, complex & risky contracts

Severe landfill pollution & land scarcity

Small and Medium Towns

Lower volumes, mostly organic

Easier socially, but weak enforcement

Limited facilities and lack of infrastructure for collection and treatment, open dumping

Grant-dependent, weak user charges

Severe staff & technical shortages

Low interest from private players, needs clustering

Localised health & water risks

Initiatives taken to improve collection and Segregation

Smart monitoring and tax rebates for collection and segregation by Navi Mumbai

NMMC also incentivized segregation through **property tax rebates** and community recognition:

- **5% General Tax Rebate:** For buildings segregating wet, dry, and other waste on-site and handling maximum quantities.
- **5% General Tax Rebate:** For buildings handing over maximum dry waste for recycling.

Gandhinagar Municipal Corporation conducting various drives and campaigns for promoting waste segregation

My Theli campaign

"My Theli" અભિયાન હેઠે વધુ 11 દિવસ માટે!!

લોકોના ઉત્તોલનથી પ્રતીસાંકે કરાશે "My Theli" અભિયાન હેઠું વધુ 11 દિવસ માટે. નમારા કૂણા કાંઠાંથી ખૂણ પર જ દસોણ જેગ પાતાન કરો.

સંપત્તિ-પંકુતની બંદનો દ્વારા તમારા જૂના કપડાંથી આર્થર્ક કપડાંની થેતીઓ ખૂણ પર જ દસોણ જેગ પાતાન કરો. આપણામાં આવશે.

સ્વચ્છતા સંપાદ

સ્વચ્છતા સંપાદ સામૃદ્ધ ત્રામદાન વિનિયોગ અભિયાન સામૃદ્ધ અભિયાન

સ્વચ્છતા સંપાદ સામૃદ્ધ ત્રામદાન વિનિયોગ અભિયાન

Multiple Clean-up drives and pledges for keeping city clean.

Improving D2D collection by regularizing and GPS based monitoring with alert systems

Steps taken by ULB to enhance D2D collection:

- Private operator strictly follows the collection routes given by ULB, as the vehicles were not adhering to any defined route earlier
- Along with GPS tracking, added a feature of alert on detour of vehicle to the monitoring authority
- Organized a virtual training session by monitoring app developer for ULB officials, agency representatives

Initiatives by various local bodies for decentralized collection and transportation

Decentralised collection and transportation model of Ambikapur

Segregation at Source by SHGs

Tertiary segregation center at sanitation park

Segregation at SLM center

- The city adopted a decentralized, community-driven C&T system
- 17 wards managed by women self-help groups (SHGs)

Introducing Zero Waste Management (ZWM) units to reduce load on centralized systems

WASTE TRANSPORTATION

WASTE SEGREGATION

COMPOSTING

DRY WASTE STORAGE

- Zero Waste Management (ZWM) units were introduced in the town
- **Rollout of 9 ZWM units** (zone-wise) maintained by local SHGs / federations for neighbourhood segregation, composting and dry-waste storage.
- **Small biogas units & shredders** (procurement under SFC grants)

Vermi Compost Plant for wet waste processing

- GMC has converted a former dumpsite into a local vermicomposting facility that processes organic waste near its source,
- ensures high-quality compost through well-designed infrastructure and O&M practices, and creates a closed local loop by using and selling the compost within the city

Initiatives of processing waste and converting waste to resource

Saswad processing its wet waste and utilizing as a compost generating monthly 4 lakh revenue

- Material is settled up for windrow composting
- Bioculture sprayed on windrows for effectively reducing waste volume
- Re-shredding after 30 days to produce fine compost ready for sale

Pune's MRF–RDF Model – Waste Pickers Driving Decentralized Resource Recovery

- PMC, in partnership with SWaCH Cooperative developed a decentralized network of MRFs across the city.
- Waste pickers collect dry waste door-to-door, sort recyclables for sale, and send the combustible fraction to RDF units, which supply cement kilns as fuel.

Khedbrahma's Solid Waste Processing Plant

- MoU with various industries for

Good Practices in Plastic Waste Management

Eco Bricks from Plastic Waste Bhavnagar Municipal Corporation

- Citizens were asked to fill one-liter PET bottles with around 350 grams or more of non-recyclable plastic waste
- Paid Rs. 10 for every three such filled bottles,
- Implemented in collaboration with schools.
- 14 tons of plastic waste was used in developing a garden.

Eliminating Single-Use Plastic: Chhattisgarh's Innovative Steps

- Ambikapur's innovative approaches such as the Bartan Bank and Jhola Bank for eco-friendly alternatives to single use plastic
- Bartan Bank initiative - enables residents to rent steel utensils, under the 'ask-use-wash-return' model, at a minimal cost for community gatherings, marriages, and other social functions.

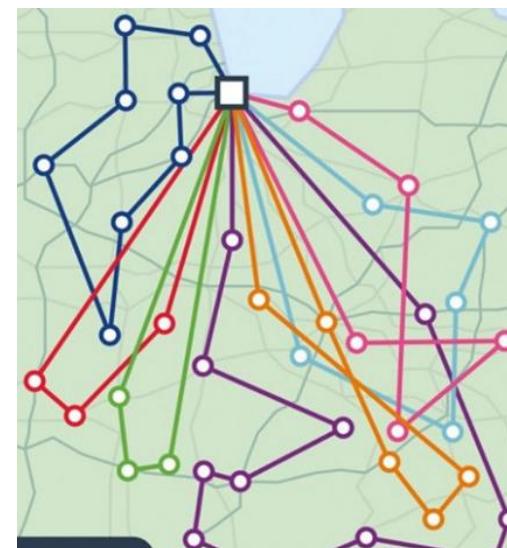
Plastic Waste Recycling in Itarsi, Madhya Pradesh

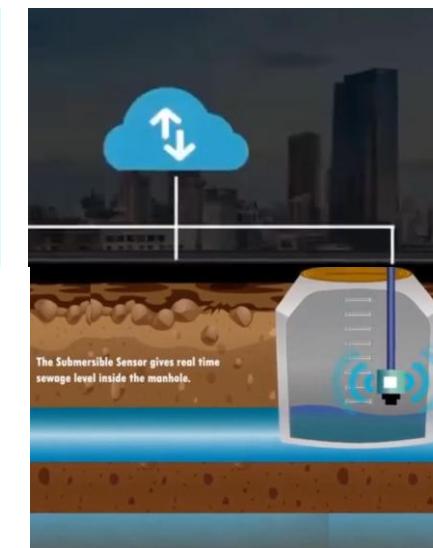
Recycled Plastic Bench, Weight: 40 Kg

- Pioneering initiative to manage plastic waste while generating economic and environmental benefits.
- Converts plastic waste into usable items
- Converted into products such as benches, chairs, and paver blocks.
- These recycled plastic items are installed in public spaces like parks and temples.
- A recycled plastic bench costs INR 4,500 compared to INR 8,000 for a cement bench.

Need for exploring innovations - IoT and digital analytics for improving SWM

Machine based automated segregation of mixed waste


Monitoring of Garbage Vulnerable points through computer vision analytics


SMART bins – bin overflow monitoring through computer vision analytics

Drone based analytics for monitoring garbage hotspots

Route optimization for door-to-door collection through

Sensor based sewer monitoring for blockages and overflow